Skip to contents

outputConstraintTab() is used to perform a score test for relaxing each invariance equality constraint between partners in a given dyadic SEM model.

Usage

outputConstraintTab(
  constrainFit,
  filterSig = FALSE,
  gtTab = FALSE,
  writeTo = NULL,
  fileName = NULL
)

Arguments

constrainFit

A fitted lavaan model with dyadic invariance equality constraints

filterSig

A logical indicating whether to filter for significant constraints (default is FALSE)

gtTab

A logical input indicating whether to generate the output in gt::gt() table object format (TRUE). By default (FALSE), the output is generated in tibble::tibble() format. Users can also apply the writeTo argument if they wish to export the gt:gt() table object.

writeTo

A character string specifying a directory path to where the gt::gt() table object should be saved. If set to ".", the file will be written to the current working directory. The default is NULL, and examples use a temporary directory created by tempdir(). writeTo is only relevant if gtTab = TRUE.

fileName

A character string specifying a desired base name for the output gt::gt() file. If a fileName is not provided (i.e., fileName = NULL), then a default will be used (i.e., "dySEM_table"). The resulting base name will automatically be appended with a .rtf file extension. fileName is only relevant if gtTab = TRUE and writeTo is specified.

Value

A tibble::tibble() if gtTab = FALSE (default), or gt::gt() object if gtTab = TRUE, with rows of equality constraints (now with readable param labels) and test statistic, df, and p for whether constraint worsens model fit.

Details

  • If gtTab = TRUE and writeTo is specified, then output will simultaneously be saved as a .rtf file to the user's specified directory.

  • If output file is successfully saved, a confirmation message will be printed to the console.

  • If a file with the same name already exists in the user's chosen directory, it will be overwritten.

Examples

dvn <- scrapeVarCross(dat = commitmentM, x_order = "sip", x_stem = "sat.g",
x_delim2="_", distinguish_1="f", distinguish_2="m")

sat.resids.script <- scriptCFA(dvn, lvname = "Sat",
constr_dy_meas = c("loadings", "intercepts", "residuals"),
constr_dy_struct = "none")

sat.resids.mod <- lavaan::cfa(sat.resids.script, data = commitmentM, std.lv = FALSE,
auto.fix.first= FALSE, meanstructure = TRUE)

outputConstraintTab(sat.resids.mod, filterSig = FALSE,
gtTab = TRUE, writeTo = tempdir(), fileName = "dCFA_Residual")
#> Output stored in: /tmp/RtmpTkj5Zg/dCFA_Residual.rtf
param1 constraint param2 chi2 df pvalue sig
Satf =~ sat.g1_f == Satm =~ sat.g1_m 1.131 1 0.288 NA
Satf =~ sat.g2_f == Satm =~ sat.g2_m 0.633 1 0.426 NA
Satf =~ sat.g3_f == Satm =~ sat.g3_m 0.060 1 0.806 NA
Satf =~ sat.g4_f == Satm =~ sat.g4_m 1.839 1 0.175 NA
Satf =~ sat.g5_f == Satm =~ sat.g5_m 3.603 1 0.058 NA
sat.g1_f ~1 == sat.g1_m ~1 0.057 1 0.812 NA
sat.g2_f ~1 == sat.g2_m ~1 1.316 1 0.251 NA
sat.g3_f ~1 == sat.g3_m ~1 0.048 1 0.827 NA
sat.g4_f ~1 == sat.g4_m ~1 0.103 1 0.748 NA
sat.g5_f ~1 == sat.g5_m ~1 2.090 1 0.148 NA
sat.g1_f ~~ sat.g1_f == sat.g1_m ~~ sat.g1_m 22.977 1 0.000 ***
sat.g2_f ~~ sat.g2_f == sat.g2_m ~~ sat.g2_m 0.263 1 0.608 NA
sat.g3_f ~~ sat.g3_f == sat.g3_m ~~ sat.g3_m 0.317 1 0.573 NA
sat.g4_f ~~ sat.g4_f == sat.g4_m ~~ sat.g4_m 2.422 1 0.120 NA
sat.g5_f ~~ sat.g5_f == sat.g5_m ~~ sat.g5_m 17.185 1 0.000 ***