
Compare model fit of nested dyadic invariance models in order from most parsimonious (residual) to least parsimonious (configural)
Source:R/getInvarCompTable.R
getInvarCompTable.RdCompare model fit of nested dyadic invariance models in order from most parsimonious (residual) to least parsimonious (configural)
Value
a data frame of model fit statistics for each model, as well as the difference in fit statistics between each model and the previous model
Examples
dvn <- scrapeVarCross(
dat = commitmentQ, x_order = "spi",
x_stem = "sat.g", x_delim1 = ".", x_delim2 = "_", distinguish_1 = "1", distinguish_2 = "2"
)
#>
#> ── Variable Scraping Summary ──
#>
#> ✔ Successfully scraped 1 latent variable: sat.g
#> ℹ sat.g: 5 indicators for P1 (1), 5 indicators for P2 (2)
#> ℹ Total indicators: 10
sat.residual.script <- scriptCor(dvn,
lvname = "Sat",
constr_dy_meas = c("loadings", "intercepts", "residuals"), constr_dy_struct = "none"
)
sat.intercept.script <- scriptCor(dvn,
lvname = "Sat",
constr_dy_meas = c("loadings", "intercepts"), constr_dy_struct = "none"
)
sat.loading.script <- scriptCor(dvn,
lvname = "Sat",
constr_dy_meas = c("loadings"), constr_dy_struct = "none"
)
sat.config.script <- scriptCor(dvn,
lvname = "Sat",
constr_dy_meas = "none", constr_dy_struct = "none"
)
sat.residual.fit <- lavaan::cfa(sat.residual.script,
data = commitmentQ,
std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE
)
sat.intercept.fit <- lavaan::cfa(sat.intercept.script,
data = commitmentQ,
std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE
)
sat.loading.fit <- lavaan::cfa(sat.loading.script,
data = commitmentQ,
std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE
)
sat.config.fit <- lavaan::cfa(sat.config.script,
data = commitmentQ,
std.lv = FALSE, auto.fix.first = FALSE, meanstructure = TRUE
)
mods <- list(sat.residual.fit, sat.intercept.fit, sat.loading.fit, sat.config.fit)
getInvarCompTable(mods)
#> Warning: `getInvarCompTable()` was deprecated in dySEM 1.1.0.
#> ℹ Please use `dySEM::outputInvarCompTab()` instead.
#> mod chisq df pvalue aic bic rmsea cfi chisq_diff df_diff
#> 1 residual 78.842 42 0.000 3855.175 3918.308 0.087 0.970 NA NA
#> 2 intercept 60.321 37 0.009 3846.654 3923.512 0.074 0.981 -18.521 -5
#> 3 loading 58.810 33 0.004 3853.143 3940.981 0.082 0.979 -1.511 -4
#> 4 configural 53.026 29 0.004 3855.359 3954.176 0.085 0.981 -5.784 -4
#> p_diff aic_diff bic_diff rmsea_diff cfi_diff
#> 1 NA NA NA NA NA
#> 2 0.002 -8.521 5.204 -0.013 0.011
#> 3 0.825 6.489 17.469 0.008 -0.002
#> 4 0.216 2.216 13.196 0.002 0.001